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1. INTRODUCTION

Fiber-reinforced materials continue to be introduced into new applications which demand a high

level of mechanical performance. The success of fiber composites in displacing traditional materials

relates directly to their high levels of specific properties, namely stiffness and strength. Many of the

new applications involve using these materials in thick section forms whereas the traditional methods

of fabrication primarily have been limited to thin section fonns. The use of fiber composite laminates

in very thick forms introduces many problems not encountered in corresponding thin forms.

Specifically, the continuum mechanics analysis of structures composed of thick section forms involves

fully three-dimensional conditions of analysis. rather than simplifying to a sub-space in terms of the

components of stress or strain. Considering the inherent anisotropy of such materials, the

complications of three-dimensional analysis are far beyond those encountered with the commonly used

simplifying conditions. Equally important is the nature of failure criteria in its most general form,

suitable for assessment of three-dimensional stress conditions. Failure criteria for composites have

almost always been devised and applied in the vastly simpler cases of certain sub-spaces of the stress

tensor, rather than for the full form. The present work aims to provide a lamination theory for

determining anisotropic stiffnesses with no restriction to thin section forms. In parallel with that

development, a failure criterion will be derived, not postulated, which has application to fully three-

dimensional conditions, but still embodies a minimum number of failure parameters to be determined

from experiments.

In considering the current state of composite material technology, it should be recognized that

classical lamination theory has had a profound effect upon the development of the field. By common

usage, the term classical lamination theory, refers to the corresponding analytical procedure for

determining structural stiffness under plane stress conditions. The procedure is to be found in all

books on composites, from elementary to advanced; it is completely codified and reduced to standard

design application. The enormous success of classical lamination theory provides ample motivation

for seeking its generalization to three-dimensional forms. Henceforth, the term classical lamination

theory will be referred to as two-dimensional lamination theory. The reason why two-dimensional

lamination theory cannot be easily extended to three dimensions is quite simple to see. Consider a

sequence of fiber-reinforced lamina stacked together to form a laminate, each lamina having a different

fiber direction. The stress components on each lamina can be divided into the "in-plane" components

and the "out-of-plane" components, three of each. Two-dimensional lamination theory only deals with



the in-plane components. The out-of-plane stress components act between the various lamina. When

a particular three-dimensional state of uniform strain is imposed on the laminate for purposes of

determining the stiffness, the out-of-plane stress components will in general be different from lamina-

to-lamina due to the different fiber orientations in each. These differences in the out-of-plane stress

components acting between lamina violate equilibrium conditions, and the problem must be formulated

more generally or differently to overcome this difficulty.

This problem just mentioned comes into focus when one considers the application of finite

element codes to analyze thick composite laminates. Typically, a single three-dimensional element

would be composed of many individual lamina of the composite material. The determination of the

stiffness of the individual element is the first step in constructing the stiffness matrix for the entire

structure. The individual element stiffness problem then reverts to the three-dimensional lamination

problem just discussed. It is possible to formulate an individual boundary value problem for each and

every element in the entire three-dimensional grid in order to overcome the above described

equilibrium problem. However, this would be the "brute force" approach which would tax even the

largest computers. The approach here looks for a more sophisticated method by which to assemble the

three-dimensional stiffness characteristics for thick composite laminates. Specifically, the three-

dimensior2l tensor transformations will be examined to search for any spec al cases which simplify

this problema but do not sacrifice physical reality. Just such an opportunity will be shown to exist.

The tensor transformations problem was the original and complete objective of this work. Upon

the completion of that work, it was desired to cast the tensor transformations into the simplest possible

form, one which would admit direct physical interpretation. Ii so doing and with no approximation

involved, it was found that the stress strain relations for the lamina-and thereby the tensor

transformation forms used to obtain the stiffness of the laminatc -took a special form which

partitioned out the effect of fiber reinforcement to a form far more simple than that involved with

merely starting properties appropriate to a transversely isotropic medium. This simplification allowed

the use of corresponding forms for failure characterization and led directly to the derivation of a new

failure criterion.

It is not neccssary to detail the historical background on the generation of failure criteria for

composite materials. Many such discussions exist in the literature, and only representative and well

known sources will be mentioned here. Hill (1960) generalized the Mises criterion for isotropic
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materials to anisotropic materials by expressing the failure criterion in quadratic terms of the stress

components but with coefficients taken to vary from term-to-term rather than being identically the

same as in isotropy. Goldenblat and Kopnov (1965) expressed the anisotropic failure criterion as a

tensor polynomial, with unknown coefficients, the quadratic terms of which would correspond to Hill's

form. Tsai and Wu (1971) also employed the tensor polynomial form, and over the intervening years

since their first work, they have done extensive experimental evaluations. Hashin (1980) pursued the

concept of a piece-wise smooth failure surface combined with some quadratic forms, in recognition of

the existence of different and competing modes of failure. The present criterion is fundamentally

different from all of these, but in motivation, it is probably closest to that of Hill. The present

criterion has an intimate relation to the Mises criterion for isotropic materials, as does Hill's criterion.

This new criterion is intended to provide a balance between having a minimum number of parameters

to be evaluated from simple experiments while still encompassing the actual physical characteristics of

the failure process.

The sequence of developments is as follows. First, the three-dimensional lamination theory will

be derived. The keys to the developments are two restrictions which reduce the five independent

properties of a transversely isotropic material to a form involving three independent constants. The

appropriateness of these restrictions in the case of fiber composites will be evaluated against standard

experimental data. Next, the resulting matrix form for the three-dimensional tensor transformations

will be shown to admit analytical characterization through a single form which is only slightly more

complicated than that of the stress strain relations for isotropic elastic material. This latter form

directly opens the door to the derivation of the corresponding failure criterion. Finally, the failure

criterion will be evaluated with respect to failure data, and some items of discussion will be given.

2. THREE-DIMENSIONAL LAMINATION THEORY

It is helpful to sketch the procedure of two-dimensional lamination theory before proceeding to

the three-dimensional case. Under conditions of plane stress, the three in-plane components of stress

in an individual lamina are related to the strains by the linear, elastic matrix relation.

[1 IQ]k[FIk, (I)
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where index k refers to the 0- lamina in the laminate. Matrix [Qlk gives the two-dimensional stiffness

properties specification. Define the stress resultants by the integration procedure,
(k2/ , [ C ) (k ) (k ) ]

(N.,NY,N1,) f X"' G ao.?O Ic ]dz, (2)

where the integration is over the entire thickness, encompassing all lamina. Then the laminate stress

resultant, strain relation is given by

N All 12 A16 EO
N -- A21 A2A6 F_3[$: = (3)

A 61 A62 A66 L2,j,

where

A _j Qk) dz(4)h/2

with e ° , e;, and e being the middle plane strains, and the coefficients Aij representing the laminate

stiffness properties. Laminate coefflicients Ai, are obtained from lamina properties Q() by direct

integration, which is really just algebraic summation. Conventionally, bending moments and

curvatures are included in the general form of two-dimensional lamination theory, with no increase in

complication, so long as classical bending theory assumptions are employed. The success of this two-

dimensional lamination theory relates to the fact that only in-plane stress components are involved, and

thereby the property specification for the laminate follows from that of the lamina through the relation

in Equation 4.

If out-of-plane ,tress components are not taken as vanishing through the plane stress assumption,

then the above procedure is not applicable, and more general three-dimensional lamination procedure

must be found. That is the problem of interest here. Necessarily then the full three-dimensional

effects must be taken into account in formulating the lamination procedure to go from lamina

properties to laminate properties. Take axis 1 to be coincident with the fiber direction, and axis 3 to
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be normal to the plane of the lamina. For an individual lamina, the macroscopic properties are those

of a transversely isotropic medium. Using direct notation, the stress strain relation is given by

a= Ci j ,  (5)

where

CII C12  C12 0 0 0

C22 C23 0 0 0

[Cij]- C22  0 0 0 (6)

C22-C 23 0 0
2

C66 0

C66

5



and with the notation

O1 =-- O 11 I = --- 11

02 - 022 2 = 
F-22

03 = (Y33 £3 = -33

04 - 0Y23 C4 = 2 e23

05 = 013 FE S 2 -13

0 26 = Y12 £6 2 c12"

There are five independent properties involved in Equation 6, and they can be related to engineering

properties through

2K s
C = El + 4 v12 K23

C12 = 2K23 V12

C22 = IL3 + K 23  (7)

C23 = 93 + K23

C6 = i12,

where E1l is the longitudinal or axial modulus, 1 12 the axial Poisson's ratio, p.12 the axial shear

modulus, P-23 the transverse shear modulus, and K2 3 the plane strain bulk modulus. The plane strain

bulk modulus K23 can be eliminated in favor of the transverse modulus, E22 , through

E.
K 2 3 = 22

4 - E2 (8)

Next, a coordinate rotation, as shown in Figure 1, will be taken. The appropriate tensor

transformed components of Cii are given by Cj,

6



6I

C 0 C00 00 I

I o 2

C 2  C212  C213  0 0 2 6

F- 
L

Ic1 3  c3  0 0 C 6

[C.. I 0 0 0 c ~ C 0 (9)

0 0 0 c ~ C 5  0

~~~L - - - - - -1-r
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with

C'll = m 4 C, + 2m2n2 (C,2 + 2 C66) + n4 C22,

C'12 = M2n2 (C,1 + C22 -4 C66) + (m4 + n4) C12,

C13= m2 C12 + nz2 C 23,

C'16  -inn [rn2 C11 -n2 C22 - (M2 - n2) (C,2 + 2C 66)1,

C'22= n4 C1 1 + 2m2 n2 (C, 2 + 2C66 + M4 C22,

C'23 = n2C12 + m2C23,

C'26= -inn n2 CI, - m2C22 + (m-n 2) (C12 + 2C66)1,

C33 C22,

C"36 = mn (C 23 - C12 ),

C,-m2j1C1-C2j 1

C'44 + n2 C 6 6 ,

C'45 = mn - C6 ,

C '5 5= 2 C 6 +n 2 2 2

22 2'l

66 = m2 n2 (C, + C2 2 " 2 C12)

+2 mn (mWn2) C22 + (m2-n2) 2 C66, (10)



where

m = cos 0,

n = sin 0,

with 0 being the angle of rotation in the plane of the lamina, plane 1-2.

The out-of-plane terms in the stiffness matrix are contained within the inner dashed region of the

matrix in Equation 9. The remaining terms outside the region of the third, fourth, and fifth rows and

columns of Equation 9 are those corresponding to classical, two-dimensional lamination theory. The

seven coefficients, C'13, C23 C 33, C 36, C 44, C4, and C 5, give rise to interlaminar stresses which

act between the lamina when a given state of uniform strain is imposed. These coefficients, or

constants, depend upon the fiber orientation through the geometric terms m and n in Equation 10.

Furthermore, the resulting interlaminar stresses would in general vary from lamina-to-lamina under

conditions of uniform strain. One way to overcome this problem would be to allow the strains normal

to the plane of the lamina to vary from lamina-to-lamina, which in general would be an extremely

complicated procedure for an entire structure. Seeking a simpler approach, the objective at this point

is to identify any special cases in which the out-of-plane terms in Equation 10 are independent of fiber

orientation. Such a special case would provide full equilibrium conditions under uniform strain and

obviate the discontinuouw interlaminar stress problem just discussed. It will now be shown that a

special case of this type does exist, after which the physical significance of the special case will be

examined.

Two restrictions will be imposed. Take the five properties of the transversely isotropic medium

as being restricted by

22 -C232 Cs.(11)2

The seven out-of plane terms in Equation 10 become

C 13 = m2C12 + nC23,

C'23 = n 2 C12 + m2 C23,

9



C'33 = C22,

C"44 = C 55 = C66,

C'45 = 0,

C'36 = mn (C23-C12). (12)

It is seen that the three terms C4 4 , C5 5, and C45 and now independent of fiber orientation; C33 was

already independent of fiber orientation. This is progress, but the three terms C'13, C23, and C 36

remain dependent upon fiber orientation.

Now take the second restriction,

C12 = C23, (13)

in the five transversely isotropic properties. Using Equation 13, then Equation 12 becomes

C'13 = C12,

C'23 = C12 ,

C 33 = C22,

C"44 = C"5 5 = C 66,

C'45 = 0,

C3 6 = 0. (14)

Now, the out-of-plane terms in Equation 9 are completely independent of fiber orientation in the

lamina, and Equation 9 can be written as

10



C11 C12 C12  0 0 C1 6

C2 2  C1 2  0 0 C2 6

[Ci ] = (C 1 2 +2C6 6 ) 0 0 0 (15)

C66 0 0

C66 0

C6 6

In properties matrix (Equation 15) the in-plane terms depend on fiber orientation and can be treated in

the usual manner of two-dimensional lamination theory. The out-of-plane terms are independent of

fiber orientation, and the same out-of-plane terms apply for the laminate as for the lamina. Thus, the

two restrictions, Equation 11 and Equation 13, have rendered a tractable three-dimensional lamination

procedure (or theory). It remains to investigate the physical significance of these two restrictions.

The two restrictions, Equation 11 and Equation 13, have reduced the five property specification of

the transversely isotropic medium down to three constants. It is necessary to express these two

restrictions in terms of the engineering properties in order to assess their significance. It is easy to

show that the restriction in Equation II implies

912 =P23. (16)

That is, the axial and transverse shear moduli are taken to be equal. The restriction in Equation 13

can be put into either of the forms

lI



2K 23 v 12 = -9 23 + K2 3, (17a)

or

v E

V23 - 1- V12 (17b)

The latter restriction (Equation 17b) implies that for a fiber dominated system with E,, -- 00, then for

V12 = 1/4, it follows that v23 = 1/3. Thus, restrictions in Equation 16 and Equation 17b can be said to

at least be within the realm of physical possibility, and there is nothing inadmissible or physically

awkward about them. Furthermore, it can be shown that the restriction in Equation 17 is identically

satisfied if the transversely isotropic medium is incompressible. To proceed further with theoretical

assessment of the two restrictions requires the use of micro-mechanics which distinguishes the

presence of fiber and matrix phases. Taking both phases to be isotropic, it can be shown that the

restriction in Equation 16 is satisfied if the fiber suspension is dilute, the fibers are very stiff compared

with the matrix phase, and the matrix phase itself is incompressible. The restriction in Equation 17 is

satisfied if both phases are incompressible. The identical satisfaction of tne two restrictions in these

conditions at least encourages one to believe that the two restrictions may not be too far from being

satisfied when the phases are not incompressible nor the suspension dilute.

Probably a more meaningful check on the two restrictions in Equation 16 and Equation 17 can be

made by comparing them with actual properties data for composites. To this end, the restriction in

Equation 17 can be written in yet another alternate form, using transversely isotropic properties

identities, as

(1 -v,2)E22
l-2,3 v 2E22  (18)

Ell

Now transverse shear modulus 923 is difficult to measure, and conventionally it is not reported.

Combining restrictions in Equation 16 and Equation 18, however, gives a single form which can be

checked against typical data:

12



( 1-V2) E22

912 = (1-v 1 2 E) (19)

2(1 - V1E22Ell

Three examples of graphite-epoxy properties data will be given for checking the restriction in

Equation 19. From Drysdale (1986), AS-4 fiber/Epoxy data are given by

Ell = 157 GPa,

E22 = 11.8 GPa,

V1 2 = .28,

p12 = 4.57 GPa.

Using the first three properties in Equation 19 gives p.12 = 4.27, which compares favorably with the

measured value. As another example of a graphite AS6/Epoxy data set, Drysdale (1986),

Ell = 150 GPa,

E22 = 10.4 GPa,

V12= .30,

912 = 3.49 GPa.

The prediction from Equation 19 gives 9,2 = 3.66, which again compares favorably with the above

value. As an example of a data set which compares less well, the following is IM7/Epoxy from

Gillespie (1986)

ElI = 155 GPa,

E22 = 8.3 GPa,

13



V12 = .33,

P 12 = 4.8 GPa.

The value for 9 12 from Equation 19 is 2.8 GPa which is considerably different from above value of

4.8 GPa.

Three more examples will be given for different fiber systems. All three of these examples are

from properties data sheets compiled by Hahn, Hwang, and Cheng (1981) from industry sources.

For Kevlar 49/Epoxy

Ell = 81.8 GPa,

E22 = 5.10 GPa,

V12 = .31,

912 = 1.82 GPa,

while restriction in Equation 19 gives 1i 12 = 1.77 GPa.

For S-2 Glass/Epoxy

Ell = 58.8 GPa,

E22 = 17.5 GPa,

V12 = .27,

-12 = 7.28 GPa,

with restriction in Equation 19 giving 912 = 6.53 GPa.

14



For Boron/Epoxy

Ell = 204 GPa,

E22 = 18.6 GPa,

v12 = .23,

tL2 = 5.80 GPa,

with restriction in Equation 19 giving P-12 = 7.23 GPa.

These data sets add some degree of confidence that the two restrictions in Equation 11 and

Equation 13 or equivalently in Equation 16 and Equation 18 are reasonable forms which do not depart

drastically from physical reality, and thereby retain the three-dimensional lamination theory advantage

already discussed. Furthermore, it is well known that the two shear moduli, p-,2 and g23 are not

exactly equal, but the net effect in making the equality restriction, Equation 16, is probably quite

minor compared with the physical and mechanical effects of properly accounting for the fact that

modulus E1 1 is much larger than all of the other moduli. The latter characteristic of a fiber-dominated

system has not been disturbed by the two restrictions in Equation 16 and Equation 18.

The three-dimensional lamination theory can now be explicitly stated. The out-of-plane terms in

the stiffness matrix in Equation 9 are given by Equation 14 in terms of the original transversely

isotropic properties of the lamina. These out-of-plane properties apply to the laminate, as well as the

lamina, since these terms are independent of fiber orientation. For the in-plane terms in Equation 9,

there is a choice on how to proceed in building up the stiffness matrix of the laminate. The in-plane

terms C'11 , C'12 , C22, C'1 6 , C'2 6 , and C 6 6 can be taken directly from the tensor transformation

relations in Equation 10 or they can be taken in reduced form using the two restrictions in Equation 1

and Equation 13. The former procedure is probably preferable if the two restrictions are not at least

fairly close to being satisficd. In this procedure, then the in-plane terms are found from the

corresponding terms in Equation 9 and Equation 10 using exactly the same lamination procedure as in

15



two-dimensional theory. The out-of-plane terms necessary employ the two restrictions and are given

by Equation 14.

In the case where the in-plane terms are taken to employ the restrictions in Equation I I and

Equation 13, then these terms in Equation 9 are given by

C'1, = mr4C l+(2m2n2 + n4) C12+ 2 (2rn2n 2 + n4) C66,

C'1 2 = m 2n2C 1 + (m 4 +m 2n2 +n 4)C 12-2m 2n 2C 66 ,

C'22= n4C1i+(m4+2m2n2)C,2 + 2 (m4+2m2n2) C 6 6,

C', 6 = m3n (-C,, + C12 + 2 C6 6 ),

C'26 mn3 (-C,, + C 12 + 2 C6 6),

C' 66 = m2 n2C 1 + [-m2n2 + 2mn(m2-n2)]Cl2

+ [M 4 + 4Mn (m2-n2) + n41 C66 . (20)

These terms along with Equation 14 then give the complete tensor transformations to be used in the

three-dimensional lamination theory, wherein all terms use the two restrictions, rather than just the out-

of-plane terms.

3. RESTRICTED FORMS

The tensor transformations obtained in the preceding section can be manipulated into a much

more concise and meaningful form. The two restrictions in Equation 11 and Equation 13 can be used
to express the original five transversely isotropic properties, C, C,2 , C22, C23, and C 66 in terms of

three engineering properties. By far the most common three engineering proi erties obtained are El1,

E22 , and v, 2. The final results also will be given in terms of the three properties Ell, g12, and V,2.

Either group of three properties can be obtained from only tvo simple experiments. Using restrictions

in Equation 16 and Equation 18 it then follows that the five Ci, properties of the transversely isotropic

medium are fully specified by the three engineering properties Ell, E22, and V, 2 through

16



2v 2(1-v 2)E22

1-2v 2) (1 - v 12 E22)

v 12( 1 -v 12)E2C2 -- C23 --

(1-2v1 2 ) (1- V12E2)

I (-V 12 )2En

(1-2v 2 ) ( 1 - 2 )
Ell

2 1 -V 12E22

2 E(- (21)

These relations can be cast into a more compact form as follows:

C11 = (E,,-E) + (J-v12) a,

C1= = v 2  a,

C22 = (1-v] 2) a,

C66 -V 12 ) a, (22)2

where symbols E and a are given by

( -V 1 2) E2 2v2

(1-2v 12 ) (1 - En2)

17



E = (1 + v12) (1 - 2V12) a

_(1-v' )E~ (23

2
(lv12) E22

Ell

The forms in Equation 22 should be compared with the comparable forms for a completely isotropic

material, i.e.,

C11 = (I-v) a,

C12 = C23 = V-a,

C22 = (I-v) a,

(266= (1-2v)

where

(l-v)' - ______

(1 -2v) (1 -v 2) (1 iv)(1-2v)

and where symbol E is an isotropic modulus. Comparing Equation 22 and Equation 24, it is seen

that the fiber-reinforced medium is effectively isotropic except for the presence of the (E11-E) term in

C1 in Equation 22. It then follows that the properties form in Equation 22 can be written in the

single comprehensive form

S -I- .ekk 81j + 2 p e~i + (E11-E) 81i81,je1
(25)

18



where

v12 (1-V12) E22(1l-2v,1)( 1

and

(1-v 12) E22
(26b)

2 (1 -v 2 

(22)

Ell

with E in Equation 25 given by Equation 23. The properties entering in Equation 25 are completely

specified by the three measured properties E11, E22, and V12.

The results just derived take an even simpler form when expressed in terms of the three
properties Ell, 9,2, and V12, Using relation in Equation 19 to eliminate E22 in Equation 23 and

Equation 26, it follows that X, gt, and E entering Equation 25 are given by

E = 2(1 + v12) 9 12,

2 v 12

1-2v
12

and

P. = i12. (27)

It also follows that Poisson's ratio v corresponding to X and . is given by v = v12 .

The form in Equation 25 is one of the main results of this work. The transversely isotropic fiber-

reinforced medium has properties determined by three measured constants, Ell, E22 , and v, 2 or

alternatively by Ell, 9.12, and v12 . Relation in Equation 25 reveals that the fiber composite can be
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viewed as an effectively isotropic medium with superimposed one-dimensional reinforcement through

the last term in Equation 25. This last term shows that the fiber reinforcement has a direct effect in

that strain ell (with axis 1 in the fiber direction) causes a stress all of amount (E,1-E) F-11, but

otherwise the fiber reinforcement is of an indirect effect, as that of an inclusion phase in a matrix

phase. This indirect effect manifests itself through the isotropic terms involving X and gt in Equation

25 which, in turn, are determined by the measured properties El,, E22, and v12 or by X12 and V 12 .

The result in Equation 25 now renders the tensor transformations to a trivial form. The moduli of

the two isotropic terms in Equation 25 need no tensor transformation, while the last term, the one-

dimensional term in Equation 25, has a modulus tensor transformation that involves proportionality to

cos40. It is difficult to imagine a simpler mechanical characterization of a fiber reinforced medium. It

is emphasized that the simple form in Equation 25 follows directly from the two restrictions in

Equation 16 and Equation 18 when applied to the transversely isotropic medium properties form. The

approximate validity of these restrictions should be justified in any particular application, as was done

in the last section.

4. FAILURE CRITERION

The simple, compact, stress strain form in Equation 25 for the fiber composite is rewritten here as

= 8i j a,/1) + y(2)(28)

where

( (51) (Ell-E) ell, (29a)

and

ai = e(.. X& + 2g Fij, (29b)

where X and g± are given by Equation 26 or Equation 27 and E by Equation 23 or Equation 27,

depending upon whether Ell, E22, and V12 or Ell, p.12, and v 12 are used as the specified properties.

The term aT, (1) in Equation 29a represents the direct effect of the fiber reinforcement. The ai (2)
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The term oY, (1) in Equation 29a represents the direct effect of the fiber reinforcement. The cyi (2)

term in Equation 29b represents the effect of fiber/matrix interaction. The decomposition of stress in

the constitutive form in Equation 28 and Equation 29 will be assumed to apply for failure. That is, it

will be assumed that the direct effect of fiber reinforcement and thereby fiber failure can be decoupled

from the type of failure that represents fiber/matrix interaction including the possible effect of the

interface. Many failure criteria are said to be equally well formulated in terms of either stress or

strain, the choice being arbitrary. In the present case, the parallel option is not available. To proceed

further, strain must be used as the basic variable because the decomposition of failure modes just

discussed cannot be stated in terms of stress except through the decomposed forms of a,/(1) and oa(2)

in Equation 29. No such restriction impedes the use of strain as the failure variable.

Following the decomposition of failure mechanisms procedure just discussed, for fiber failure due

to overload, from the one-dimensional form of Equation 29a, the failure criterion is

f (- _< F1 _< Ef (+)'  (30)

where ef (-) and eft+) are the compressive and tensile fiber strain failure levels respectively.

For the fiber/matrix interaction failure, the criterion is written as

f (ei ) < 1, (31)

where from the isotropic form of Equation 29b the function ft ) is to be expressed as an isotropic

function of the strain tensor. Accordingly, the invariants of the strain tensor are used to write

Equation 31 as

f (11, 12, 13) <_ 1, (32)

where the three invariants are given by

1, = £kk.

12 = ij Eij,

13 = det [ei). (33)
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An alternate, equally general form of Equation 32 can be written using the invariant of the deviatoric

strain tensor, J2; thus the criterion is

f (1, J2, 13) 
<- 1, (34)

where

J2 = eijeij, (35)

with

= - 1/3

The advantage, of Equation 34 over that of Equation 32 is that first two invariants in Equation 34

distinguish states of dilatation and distortion. Proceeding with a polynomial expansion of Equation 34

gives it explicit form as

CC11 + VJ2 +  
2 + . . . < 1 ,  (36)

where the next terms are of cubic order and t:ie coefficients a, P, y, etc. are to be determined from

failure data.

Further consideration of the failure criterion in Equation 36 will involve truncation at the explicit

level shown. Thus, cubic and higher order terms will be neglected in accordance with infinitesimal

strain conditions. Consider further a state of pure dilatation; thus, J2 = 0 and Equation 36 to second

order becomes

t 11 + y 1
2 < 1. (37)

The form of Equation 37 is shown schematically in Figure 2 for a > 0 and y > 0. It is seen that this

form defines levels of expansive and compressive dilatational failure in terms of 11 = Ek- Now

isotropic materials do exhibit strange behavior at very high pressure levels, such as phase change and
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Contractive Expansive
failure failure

Figure 2. Dilatational Failure Relation in Equation 37.
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so forth, but in the range of moderate strains of interest here, there is no evidence that isotropic

materials undergo compressive, dilatational structural failure, meaning loss of ability to sustain load.

Therefore, the state of compressive dilatational action will be taken as not implying failure insofar as

the isotropic fiber/matrix interaction is concerned, and thereby it is required that

Y = 0.

Other sign combinations for ac and y do not alter this conclusion that y = 0, which leaves Equation

36 to second order as

alI + 13J 2 - 1. (38)

Collecting these results, the fiber composite material failure criterion has the final form

Direct ]
Fiber e <el < (+) (39a)
Failure

Fiber/Matrix 1
Interaction ax ekk . e< k2  (39b)
Failure

where axis 1 is in the fiber direction and Ekk is the volume change with eij being the deviatoric strain

tensor. The relation in Equation 39b has been put into a slightly different form from Equation 38 such

that with ax = 0 in Equation 39b, it takes the standard form of the Mises criterion. Of course,

parameter ax in Equation 38 is different from a in Equation 39b. Parameter k in Equation 39b is shear

strain at failure, while the first term, (x I1, involves the coupling with dilatational effects.
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The relations in Equation 39 are the failure criteria derived in accordance with the restricted form

of the tensor transformation relations in the last section. Thus, the overall, three-dimensional criterion,

which breaks down into two separate criteria, involves four parameters to be determined from

experimental data: E N, C (+), a, and k. Three aspects of the tensor transformation forms

contributed to the derivation of the failure criterion in Equation 39. First, was the decomposition of

direct fiber reinforcement effect in the stress constitutive relation in Equation 25, apart from the

indirect part wherein the fiber effect is acting as an inclusion phase rather than as a direct load transfer

agent. Second, the indirect effect of the fiber reinforcement part of the stress constitutive relation, in

Equation 25, took an extremely simple form that is completely isotropic. The third key ingredient in

this derivation was the necessity for using strain as the primitive variable, rather than stress.

The fact that the derivation of the failure criterion in Equation 39 required the use of strain rather

than stress as the initial variable does not mean that the final forms in Equation 39 cannot be

expressed in terms of stress. At this point it is simply a matter of using the stress strain relations to

convert expression in Equation 39 to corresponding forms in terms of stress. The relation in Equaton

39a in terms of stress takes the form

S((-) < 1 (T- _V12'33) < F(+ (40a)

and Equation 39b takes the form

.( [1-2V12 ) all + -V 2 1 -V 2 3 )

2 (E 1 22)
2 

2 2 2
3 2 2- [(1 +V 2 1 +V2 1) + (-V 2 1 )V 2 3

+ 2 
2  

+ V23

2

+3 2 [(-1-2v 21 + V23 ) + V12 ( -1 -2V 21 + V2 3 )] ( 11 (( 22 + ( 33)
3EIIE25
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+ 22 21) 2 0]
+ 2 [(-t +2v21 + 2v2,)-2(2+v21)V23-v231 22 23

3E22

2 2 2
G12 0 23  

0 3 2

412  g 4_22  (40b)
g12 443 4 12

In Equation 40a EI )Ef and EeFf (+) are identified as the compressive and tensile uniaxial stress

levels at fiber failure. In obtaining relations in Equation 40 from Equation 39, no use has been made

of the restricted property forms used in the preceding section. It probably is best to simply view

relations in Equation 39 as the given failure criterion and then use the full stress strain forms for a

transversely isotropic medium to obtain Equation 40 from Equation 39, as was done. In the event that

not all the properties involved in Equation 40 are directly available from experimental measurement,

then the properties restrictions of the preceding sections could be used to fill the mission properties.

It may be noted that the fiber/matrix interaction failure criterion in Equation 40b involves just two

experimental parameters, (x and k whereas the comparable tensor polynomial form involves eight

parameters in order to cope with fully three-dimensional conditions. Another observation is relevant;

Hahn, Erikson, and Tsai (1982) have conjectured that the term oyl can be neglected in a failure

criterion involving matrix action. The forms in Equation 39b or Equation 40b provide no such

rationale, and in this criterion, o, terms cannot be neglected nor can any of the other stress

components under three-dimensional conditions.

Finally, it is emphasized that the failure criterion in Equation 39 must take the partitioned form

separating the direct and the indirect effects of fiber reinforcement. The latter part of the criterion,

Equation 39b involves fiber/matrix interaction including the complicated effects of the interface. It is

quite conceivable that interface failure could be a major aspect of overall composite failure, and this

effect is inherently part of the fiber/matrix interaction criterion in Equation 39b.
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5. EVALUATION

Data is available with which to test the present failure theory. Swanson, Messick, and Tian

(1986) have obtained data from the testing of hoop wound, thin cylindrical shells of the fiber-

reinforced material. Axial elongation or contraction, along with torsion, is used to provide

superimposed normal stress and shear stress conditions. The normal stress is orthogonal to the fiber

direction. Thus, the composite material can fail in a structural sense by the mechanism of fiber/matrix

interaction breakdown.

For the present evaluation, axis 2 is taken in the cylindrical axis direction, and under plane stress

conditions and with o H = 0 since the cylinder is not constrained radially, the criterion in Equation 40b

takes the simple form

a( 1-v 2 -v 23) (72

022+ 2
E22 4g12

2 222
+- [I +v+21 +V2(1 -v 21)v 23+v 2 31 2 k2  (41)

3E2

The properties for the carbon fiber AS4/Epoxy medium are given by Swanson (1986) as

Ell = 124 GPa,

E22 = 8.3 GPa,

V12 = .28,

912 = 4.3 GPa.

The properties restriction form in Equation 19 gives a value of gti2 = 3.0 GPa which, although

considerably different from the above value of 4.3 GPa, is nevertheless close enough to justify trying

the present failure criterion for this medium.
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The two parameters cx and k are evaluated to fit the failure data of Swanson, Messick, and Tian

(1986) at two conditions, 022 = 0 with 012 * 0 and at 012 = 0 with 022 positive. The only property

involved in Equation 41 which cannot be obtained from the measured properties is v23. The value of

v23 = 1/3 was assumed; the results are not particularly sensitive to this assumption. The data are

shown in Figure 3. The values of a and k are found to be

a = .0123,

and

k = .00611.

Using these values in Equation 41 then gives the theoretical envelope shown in Figure 3. The fit of

the theory to the data is equally good as that given by the tensor polynomial form, which is shown in

Swanson, Messick, and Tian (1986); however, one less parameter than is required by the tensor

polynomial is available here. Furthermore, the two parameters determined from this simple test allow

the prediction of fiber/matrix interaction failure under fully three-dimensional conditions, with no

further tests needed.

The two parameters a and k can be used to predict the strain levels at failure under simple shear

and under purely dilatational conditions.. It is found than the shear strain at failure is 0.61% directly

from k while the dilatational strain at failure is 0.10%. The latter level may be triggered by interface

failure between the fiber and matrix phases. These rather low strain levels for fiber/matrix interaction

failure could be lower than the fiber strain failure levels in Equation 39a for some fiber composite

systems. On the other hand, there could be cases in which the two criteria in Equation 39a and

Equation 39b intersect, in which case the failure surface would be only piecewise smooth in contrast

to that shown in Figure 3.

6. DISCUSSION

A method has been found by which classical, two-dimensional lamination theory can be extended

to the three-dimensional form. No approximations have been introduced anywhere in this work;

however, two restrictions on properties have been employed. These two restrictions reduce the five
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Figure 3. Failure Data and Theory.

independent properties of the fiber type, transversely isotropic medium to three independent properties.

These restrictions in Equation 16 and Equation 18 are close to being satisfied by some materials

systems, but it also remains possible that they could be strongly violated in some other systems. It

remains to establish the (at least approximate) suitability of the restrictions in any particular

application. Nevertheless, it appears that for fiber-dominated systems, the reduced three property form

still gives a realistic description of the physica! behavior. The effect of the properties reduction from

five to three does not change the nature of direct fiber reinforcement; it is still specified by a direct

property measurement in the fiber direction, Ell. However, the properties reduction does affect the

indirect nature of fiber reinforcement through fiber/matrix interaction.

When these reduced forms can be taken to apply, a great simplification in constitutive relations

occurs. It becomes possible to treat the out-of-plane stress terms which are involved in a lamination

sequence as being independent of the fiber orientation in the plane of the lamina. This then allows the

in-plane effects to be treated the same as in the two-dimensional theory while the out-of-plane terms

take an even simpler form, which is integrated into the procedure. It is not necessary to use the

properties restrictions for the in-plane term effects but rather only for the out-of-plane terms. In the

case where the properties restrictions are used for both the in-plane and out-of-plane terms, then the

stress constitutive relations take a greatly simplified form wherein it is not even necessary to use the
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matrix form for properties specification for the anisotropic medium. A single tensorial equation which

is only slightly more complicated than that of the isotropic case suffices, namely Equation 25. It is

this latter simplified form that led directly to the derivation of the corresponding failure criterion.

The failure criterion in Equations 39 or 40 involves four parameters to be evaluated from

experiments. Two of the parameters associate with fiber failure directly, while two of the parameters

associate with fiber/matrix interaction and corresponding modes of failure. The latter form represents

a generalization of the Mises criterion for application-to-fiber composites. In Section 5 of this work,

th ,: theory was tested against data which involves failure specified by fiber/matrix interaction effects.

That is to say, when the fiber/matrix interaction failure criterion was exceeded, the structural failure of

the composite material ensued. This special case resulted from the fact that only two stress

components were present in the test specimen, shear stress 012 and transverse stress 022. It was

possible to fail the composite without failing the fiber phase itself in this case. This simple situation

involved with the non-axial testing of a single lamina would not be true otherwise, nor in conditions

involved with a laminate.

For a single lamina in a laminate which exceeds the fiber/matrix interaction failure criterion, it

does not follow that the laminate would necessarily undergo structural failure. In this realistic

condition, the violation of the fiber/matrix interaction criterion should be viewed as a form of damage,

involving micro-cracking or yielding and could be quantified as such. Furthermore, this failure

criterion which focuses upon failure at the level of the individual lamina should be supplemented by

an auxiliary criterion which deals with delamination conditions in a laminate. Also, it should be noted

that the present physical/deterministic failure criterion readily admits generalization to conditions of

statistical variability. At the first level, it is obvious that separate statistical distribution functions

apply to the separate mc ;hanisms for fiber failure and fiber/matrix interaction failure.

One last minor technical matter should be mentioned. Especially in the older composite materials

literature, appeal was often made to a model of an isotropic, homogeneous medium reinforced by

filaments of vanishing diameter and infinite moduli. The indeterminate filament stiffness would be

taken to be finite. That superficial model has no relationship to the present derivation where, for

example, relations in Equation 26 or 27 for the fiber/matrix interaction moduli X and gt imply and

allow the presence of finite diameter fibers at finite concentration, as measured by composite

properties E22 and p112.
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